Gradient histogram: Thresholding in a region of interest for edge detection
نویسندگان
چکیده
Selecting a threshold from the gradient histogram, a histogram of gradient magnitudes, of an image plays a crucial role in a gradient based edge detection system. This paper presents a methodology to determine the threshold from a gradient histogram generated using any kind of linear gradient operator on an image. We consider the image as a random process with dependent samples, model the gradient histogram using theories of random process and random input to a system, and determine a region of interest in the gradient histogram using certain properties of a probability density function. Standard histogram thresholding techniques are then used within the region of interest to get the threshold value. To obtain the edges, this threshold value is then used as the upper threshold of the hysteresis thresholding technique that follows the non-maximum suppression operation applied on the gradient magnitude image. The proposed methodology of determining a threshold in a gradient histogram is deduced through rigorous analysis and hence it helps in achieving consistently appreciable edge detection performance. Experimental results using different real-life and benchmark images are shown to demonstrate the effectiveness of the proposed technique. 2009 Elsevier B.V. All rights reserved.
منابع مشابه
Fully automatic lesion boundary detection in ultrasound breast images
We propose a novel approach to fully automatic lesion boundary detection in ultrasound breast images. The novelty of the proposed work lies in the complete automation of the manual process of initial Region-of-Interest (ROI) labeling and in the procedure adopted for the subsequent lesion boundary detection. Histogram equalization is initially used to preprocess the images followed by hybrid fil...
متن کاملDynamic Thresholding Based Edge Detection
Edges are regions of interest and edge detection is the process of determining where the boundaries of objects fall within an image. It is an important concept, both in the area of object recognition and motion tracking. This paper presents an adaptive thresholding based edge-detection method using morphological operators. The novelty of the approach is the adaptive efficient peak detection of ...
متن کاملA novel intuitionistic fuzzy approach for tumour/hemorrhage detection in medical images
This study presents a novel method to detect edges that clusters, thresholds, and then detects edges of tumour/ hemorrhage region using intuitionistic fuzzy set theory. Clustering segments image into several clusters and histogram thresholding eliminates unwanted clusters that are not related to tumour/hemorrhage region. Finally, image is edge detected, where a clear boundary is obtained. Propo...
متن کاملImage Edge Detection and Segmentation by using Histogram Thresholding method
A new approach used for image edge deduction, segmentation and normalization illumination under varying lighting conditions are presented. Edge detection refers to the process of identifying and locating sharp by applying smooth and noisy clinical technic in an image. It has favorable applications in the fields such as machine vision, pattern recognition, object recognition, motion analysis, pa...
متن کاملFast and Accurate Border Detection in Dermoscopy Images Using Statistical Region Merging
As a result of advances in skin imaging technology and the development of suitable image processing techniques during the last decade, there has been a significant increase of interest in the computer-aided diagnosis of melanoma. Automated border detection is one of the most important steps in this procedure, since the accuracy of the subsequent steps crucially depends on it. In this paper, a f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Image Vision Comput.
دوره 28 شماره
صفحات -
تاریخ انتشار 2010